
Theory of vesicle budding

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 SA329

(http://iopscience.iop.org/0953-8984/2/S/051)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 11:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/S
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys.: Condens. Matter 2 (1990) SA329-SA332. Printed in the UK 

Theory of vesicle budding 

W Wiese and W Helfrich 
Institut fur Theoretische Physik, Freie Universitat Berlin, Arnimallee 14, D-1000 Berlin 
33, Federal Republic of Germany 

Received 9 July 1990 

Abstract. The formation ofasmalldaughtervesicle from alarge mother vesicle isconsidered, 
the two being connected by a narrow constriction. This budding is achieved by either 
decreasing the enclosed volume or increasing the membrane spontaneous curvature of a 
nearly spherical vesicle while the other quantity and the membrane area are constant. The 
activation energy of the discontinuous transition is identified and found to decrease to zero 
as the respective parameter change progresses. 

The shape of non-spherical vesicles formed by a fluid membrane in water is usually 
thought to be controlled by the bending rigidity, including the spontaneous curvature, 
and the constraints of fixed enclosed volume and membrane area [l]. While the general 
differential equation for equilibrium shapes is of fourth order in the displacement of 
the membrane [2], axisymmetric equilibrium shapes obey a second-order differential 
equation for an angle as a function of a single variable. This special equation has been 
used to calculate red blood cell shapes [3 ,4] ,  to predict a variety of stable and unstable 
equilibrium shapes of vesicles [l] and to propose a model of cell division with a sphere 
splitting into two smaller spheres of equal size [ 5 ] .  Very recently, the question of whether 
or not vesicles adhere to an attractive wall has been treated in the same terms [6] .  

In the following we wish to deal with a problem known as budding in cell biology, 
i.e. the creation of a small daughter vesicle from a large mother vesicle, involving a 
narrow constriction and, eventually, fission. The considerations are again limited to 
rotationally symmetric shapes. 

In general, shape calculations start from the variational ansatz 

6 $ [+k,g(c ,  + c2  - c0)* dA + A p  V + AA] dA = 0. 

Here g = &,(cl + c2 - c0)* is the bending elastic energy per unit area of membrane, k, 
being the bending rigidity. c 1  and c2 are the principal curvatures, and co the spontaneous 
curvature. The constraints of constant enclosed volume V and membrane area A enter 
(1) with the Lagrange multipliers Ap and A which are the difference between the outside 
and inside pressure and the lateral membrane tension, respectively. 

Restricting ourselves to axisymmetric shapes, we may express the principal cur- 
vatures along a meridian and tangential to a parallel, respectively, by 

c, = COS q (dv /dx)  cp = (sin q ) / x .  
Here x is the distance from the polar axis and q is the angle that the membrane makes 
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with the plane tangent to the north pole. ( y  runs from 0 at the north pole to n at the 
south pole, so that the curvatures are positive for a sphere.) A transformation of the 
resulting second-order differential equation for q ( x )  leads to the set of first-order 
differential equations used in the computer calculations [ 1,341:  

dc,/ds = t ( 1  - ~ c ~ ) - ” ~ { c ~ [ ( c ~  - C O ) *  - c;] + 2(A/kC)cp + A p / k c }  

- 2(1 - f c ;>(c ,  - cp)/f 
dc,/ds = i 2 ( 1  -~c~)’/*(c, - c,)/f 

df/ds = ? 4(1 - f ~ $ ) ” ’  

wheref = x2 and the new independent variable s. ranging from 0 to 1, is the fraction of 
the membrane area between the north pole and the parallel. (The signs in front of the 
derivatives are plus at the north pole and change at each equator.) 

We consider budding in two simple situations corresponding to possible experiments. 
The membrane area is assumed constant in both of them. In one case, the vesicle volume 
is decreased from its maximum, which is the sphere, at a fixed positive spontaneous 
curvature. In the other case, the volume is fixed at a value not much below its maximum 
while the spontaneous curvature is increased from zero. Both times the final state of 
lowest energy is the bud, i.e. a small sphere (daughter) in equilibrium with a large sphere 
(mother) to which it is connected by a constriction of ideally infinitesimal size. 

Osmotic shrinkage of vesicles is known to transform spheres into other shapes which 
usually are flaccid, undergoing strong fluctuations [7]. (We disregard here any effect of 
water permeation on spontaneous curvature [8].) A change in spontaneous curvature at 
fixed volume can in principle be achieved by exchanging the outer aqueous medium for 
another solution at constant osmotic pressure. 

Two spheres connected by an infinitesimal constriction, which may have to be 
enforced, are in mechanical equilibrium at those values of A p  and A which satisfy the 
normal force balance [2] 

kC(cO/Rf)(2 - COR,) - A p  - 2A/R, = 0 
simultaneously for both spherical radii R, ( i  = 1,2) .  The double spheres are (mech- 
anically) stable equilibrium shapes only if the constriction remains infinitesimal in the 
absence of the constraint. We do not expect this to be the case, but the true equilibrium 
shapes approximated by the double spheres should have narrow constrictions, which we 
could not compute, and will be lower in energy. Interestingly, these double spheres are 
a class of shapes by themselves, i.e. they do not tend to one of the usual deformation 
modes represented by Legendre polynomials as the volume of the large sphere asymp- 
totically approaches its maximum value (4n/3)Ri with RO = ( A / ~ x ) ~ / * .  

In order to deal with budding through volume reduction we compare the bending 
elastic energies of three classes of shapes. They are the double spheres, the symmetric 
shapes ranging from the sphere via prolate ellipsoids to dumbbells, and the asymmetric 
shapes changing from incipient buds (with three equators) via pears to eggs before 
merging in the symmetric shapes. The ellipsoids and the asymmetric shapes are cal- 
culated equilibrium shapes. Two examples of the latter are shown in figures l and 2. The 
bending energies E are plotted versus the volume for coRO = 8 in figure 3. The ellipsoids 
are the states of lowest energy where they are nearly spherical. They become unstable 
where the third line representing the pears, etc, merges into theirs as may be seen by the 
following argument. The locus of the pears, like that of the double spheres, represents 
two equilibrium shapes, the thinner ends pointing either up or down. The pears, etc, 
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CORo= 8CNO 
ApR:/kc - 2 8 W  
V / V 0  = 09L98 
E / E o =  09L93 

Figure 1. An incipient bud (unstable) with some 
of its parameters. 
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Figure 3. Energies in units of k ,  as functions 
of the relative volume for c P 0  = 8, where 
V o  = (4n/3)Ri and Eo = 2nk,(2 - coRO)' .  The 
top curve represents unstable asymmetric shapes, 
coveringthe rangewhere they could becomputed. 
Its dotted part is the border region between incipi- 
ent buds (three equators, on the right) and pears 
(one equator, on the left) whichwas not accessible 
to calculation. The short vertical line marks the 
merging of the asymmetric shapes into the sym- 
metric shapes. The ellipsoids start from the sphere 
(V/V,,  = 1) and are stable before being joined by 
the unstable shapes. Double spheres with infini- 
tesimal constrictions are represented by the third 
curve. The stable equilibrium shapes for which 
they substitute must be even lower in energy. 
Their curve may merge and annihilate with that 
of the unstable asymmetric shapes on the right of 
the region where the latter were obtainable. The 
bud forms as one goes from right to left 

CORo= 80000 
ApR;/kc=-9L 000 
V I V O  = 090L8 
E /Eo E 1 0256 

Figure 2. A pear-like shape (unstable) with some 
of its parameters. 
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Figure 4. Energies in units of k ,  as functions of 
spontaneous curvature for V / V ,  = 0.98. For 
details see figure 3, but reverse sides. The bud 
forms as one goes from left to right. 

must be unstable shapes so that the merger of two 'ridges' with the 'valley' of the ellipsoids 
results in a single extremum of the energy which then has to be a 'ridge'. The topo- 
graphical reasoning should hold despite the infinite dimensionality of configurational 
space. 

In an experiment startingfrom the sphere, the vesicle should first become an ellipsoid 
as the volume is decreased at constant spontaneous curvature. There will be a spon- 
taneous transformation into the bud at the volume where the ellipsoid becomes unstable. 
The same transition may take place before this point is reached by means of thermal 
activation. The activation energies can be read for each volume from the plot in figure 
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3.  This is because the topmost curve represents ‘ridges’ or, more precisely, ‘passes’ of 
the bending energy in configurational space. The two classes of asymmetric shapes are 
likely to be absent above a certain volume where they join and annihilate each other. A 
similar situation arises in connection with invaginated red blood cell shapes [l, 41. The 
energies are plotted in units of k, which for typical biological model membranes is of the 
order of 10kB T.  

The same three classes of shapes are involved in the budding from an ellipsoid of 
constant volume and surface area while the variable parameter is spontaneous curvature. 
The situation is especially simple as the double sphere keeps its form and the ellipsoid 
changes shape only little with cos The energies of the three shapes are plotted versus 
cd i0  2 0 in figure 4 for the volume V = 0.98(4n/3)Ri. The interpretation of the plot is 
analogous to that of the preceding figure, allowing again for spontaneous and activated 
transitions from the ellipsoid to the bud. 

Our theory of budding, and in particular the assignment of stability or instability to 
the shapes invoked, is based on the assumption that there are no other equilibrium 
shapes of lower bending energy. This seems to be correct for C J ? ~  = 8 if one considers 
the energies of weakly excited deformation modes represented by spherical harmonics 
(see, e.g., [2]) because for a given volume the ellipsoid is the spherical harmonic mode 
of lowest energy. The inclusion of shapes without rotational symmetry should not affect 
these arguments. 

The eventual fission of the daughter from the mother vesicle cannot be described 
by an elastic theory. Casual observations with egg yolk phosphatidylcholine (EYPC) 
membranes indicated that separation can be triggered very easily, e.g. by touching the 
cover slide of a sample cell [9]. Moreover, there is evidence that certain biological model 
membranes, notably EYPC bilayers, change their topology in the absence of any stresses 
as a function of temperature [lo]. 
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